FOR ARCHIVAL PURPOSES ONLY: PUSHMI-PULLYU'S BEV SEMI TRUCK NAPKIN MATH ANALYSIS (AKA "NAPKIN MATH 1.0")
[continued]
WEIGHT ANALYSIS
Weight *is* an issue, altho perhaps not as much as it appears.
At 2.4 kWh per mile, enabling a range of 750 miles requires our BEV semi tractor to carry a (750 x 2.4 =) 1800 kWh battery pack. At an estimated 11.5 pounds per kWh, that's 20,700 lbs. We save just a bit by losing the diesel drivetrain; maybe 3000 lbs or so. We also save half the weight of the fuel*, which for a trip of 750 miles (using ~115.35 gallons) would be approximately 409.5 lbs. (We could also subtract the weight of the transmission, but then the EV motor, inverter etc. do weigh something, so let's assume that cancels out the 738 lb transmission weight.) This brings us down to an estimated ~17,300 lbs. That's 21.6% of our maximum weight limit of 80,000 lbs. And note that various State laws may reduce the maximum weight even further, depending on what States our long-range truck travels through.
Now, that's not to say this makes the idea impractical. It may well be worth sacrificing some shipping capacity as a tradeoff for lower cost per mile of moving the freight. But it does limit the market for our BEV semi a bit, or perhaps more than a bit, depending on what the customer's needs are.
*We can only deduct half the weight of the diesel fuel, because that weight will disappear over the course of the day's trip. Now that's assuming the driver starts with as much fuel as he needs for the entire day's trip, which may or may not be correct. So far as I can find by Googling, there isn't any standard size for semi tractor fuel tanks; one source says they range from 100-400 gallon capacity, and I see a reference to 2 x 150 gallons as a typical size. So then, it appears reasonable to assume ~115 gallons is carried at the start, with no stops for refueling for the entire shift.
However, the importance of the weight limit has been called into question by Piper Jaffray analyst Alex Potter, who says "Most fleets run out of space in their trailers long before they approach the 80,000-pound threshold." We think he's right on this point. The weight limit will be an issue for some fleets, but not for others, and perhaps not for most. So the weight limit apparently would not limit Tesla's market much.
* * * * *
COST ANALYSIS
Cost for the battery pack is the real issue here. And that cost is almost certainly why, for example, UPS, FedEx, Wal*Mart, and other companies with large trucking fleets have not already started switching to heavy BEV trucks.
That 1800 kWh battery pack, at $180 / kWh at the pack level, will cost an estimated $324,000. And that's Tesla's estimated cost, not price, so you can likely add another 15-25% to that. Note a reasonably high-end diesel semi tractor costs $150,000, so adding that battery pack is more than tripling the cost. With a 20% markup, it's $388,000, which is 259% of the diesel semi tractor's $150,000 price. Sure, Tesla will save some money by using an EV powertrain instead of the much more complex, and more expensive, diesel powertrain. But as a percentage of the price of that battery pack, I doubt losing the diesel engine, exhaust, etc. etc. will make much of an impact on price.
There is also the matter of battery life. A Tesla battery pack may be expected to last the life of the car, but the typical car is only driven about 5-10% of the hours in a day. Contrariwise, a long range truck is expected to be on the road as much as possible. A truck just sitting around still has to be insured, and the owner still has to pay all those fees for a heavy commercial vehicle. A truck just sitting around is losing money for its owner.
So we need to ask: Just how many times will that very expensive battery pack have to be replaced, over the lifetime of the truck? A semi truck is expected to last an average of 20 years, significantly longer than the average life of a passenger car. Will the truck save enough on fuel costs to justify the amortized cost of buying replacement packs?
That's a subject beyond the scope of this analysis.
* * * * *
ADDENDUM: CUTTING THE PROBLEM IN HALF
Several people responding to this "napkin math" analysis have pointed out that if we assume the driver only drives for half a shift, then uses either battery swap or fast recharge while eating lunch, then this will allow us to use a battery only half the size, weight, and cost. This of course allows us rather more optimistic assumptions. We're not sure how realistic it is to think that a trucker would always stop to eat lunch at a battery swap station or a BEV truck stop, but let's do the math anyway.
First, we will assume a 60% battery pack size, not 50%, because there needs to be a least a bit of flexibility in what time the driver eats lunch and how far he drives before stopping in mid-shift.
60% battery pack size weighs 12,420 lbs. Losing the weight of the diesel engine and the diesel fuel saves approx. (3000 + 204.75) ≈ 3200 lbs, totaling 9220 lbs, which reduces the 80,000 lb. carrying capacity of our hypothetical BEV semi tractor-trailer rig by 11.53%, which makes this a much more optimistic scenario!
-